Does Diving Limit Brain Size in Cetaceans?
نویسندگان
چکیده
We test the longstanding hypothesis, known as the dive constraint hypothesis, that the oxygenation demands of diving pose a constraint on aquatic mammal brain size.Using a sample of 23 cetacean species we examine the relationship among six different measures of relative brain size, body size, and maximum diving duration. Unlike previous tests we include body size as a covariate and perform independent contrast analyses to control for phylogeny. We show that diving does not limit brain size in cetaceans and therefore provide no support for the dive constraint hypothesis. Instead, body size is the main predictor of maximum diving duration in cetaceans. Furthermore, our findings show that it is important to conduct robust tests of evolutionary hypotheses by employing a variety of measures of the dependent variable, in this case, relative brain size.
منابع مشابه
Navigating under sea ice promotes rapid maturation of diving physiology and performance in beluga whales.
Little is known about the postnatal development of the physiological characteristics that support breath-hold in cetaceans, despite their need to swim and dive at birth. Arctic species have the additional demand of avoiding entrapment while navigating under sea ice, where breathing holes are patchily distributed and ephemeral. This is the first investigation of the ontogeny of the biochemistry ...
متن کاملComparative histology of muscle in free ranging cetaceans: shallow versus deep diving species
Different marine mammal species exhibit a wide range of diving behaviour based on their breath-hold diving capabilities. They are classically categorized as long duration, deep-diving and short duration, shallow-diving species. These abilities are likely to be related to the muscle characteristics of each species. Despite the increasing number of publications on muscle profile in different ceta...
متن کاملHydrodynamic performance of the flippers of large-bodied cetaceans in relation to locomotor ecology
Cetaceans evolved flippers that are unique in both size and shape probably due to selection pressures associated with foraging and body size. Flippers function as control surfaces for maneuverability and stability. Flippers of cetaceans and engineered hydrofoils are similar with streamlined cross-sections and wing-like planforms, which affect lift, drag and hydrodynamic efficiency. Scale models...
متن کاملMyoglobin in pelagic small cetaceans.
Although myoglobin (Mb) is considered to contribute significantly to the oxygen and diving capacity of marine mammals, few data are available for cetaceans. Cetacean by-catch in the tuna driftnet fisheries in the Sulu Sea, Philippines, afforded the opportunity to examine Mb content and distribution, and to determine muscle mass composition, in Fraser's (Lagenodelphis hosei) and spinner (Stenell...
متن کاملNovel locomotor muscle design in extreme deep-diving whales.
Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008